

Mathematics Methods Units 3,4 Test 4 2019

Section 1 Calculator Free Logarithms

STUDENT'S NAME

DATE: Tuesday 2 July

TIME: 40 minutes

MARKS: 42

INSTRUCTIONS:

Standard Items: Pens, pencils, drawing templates, eraser

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

1. (7 marks)

(a) Solve exactly $e^{2x} + 3e^x - 10 = 0$

(b) Solve $\log_5 x^2 - \log_5 \frac{1}{x} = 6$

[4]

2. (8 marks)

(a)
$$\frac{d}{dx}e^{x^2-x}\ln 2$$
 [2]

(b)
$$\frac{d}{dx} \frac{1}{\ln(x^2 - 1)}$$
 [3]

(c)
$$\frac{d}{dx}\log_6 5x^e$$
 [3]

3. (10 marks)

(a)
$$\int \frac{3x^4 - 5}{x} dx$$
 [2]

(b)
$$\int_{1}^{0} \frac{-2+x}{-3x^2+12x+1} dx$$
 [4]

[4]

4. (7 marks)

Given that $\log_t 3 = x$ and $\log_t 10 = y$, then determine in terms of x and y, the values of each of the following.

(a)	$\log_t 30$				[1]

(b) $\log_t 2.7$

(c) $\log_t 3t^2$

(d) $\log_t \frac{9t}{\sqrt{1000}}$ [3]

[1]

[2]

5. (3 marks)

The graphs shown below are for the functions $y = \log_a (x+b)$ and $y = \log_a x + c$. Determine the value *a*, *b* and *c*.

6. (7 marks)

(a) Determine
$$\frac{d}{dx}x^2 \ln x$$
 [2]

(b) Using the result of (a) or otherwise, determine exactly
$$\int_{1}^{e} (2x \ln x) dx$$
 [5]

Mathematics Methods Units 3,4 Test 4 2019

Section 2 Calculator Assumed Logarithms

STUDENT'S NAME

DATE: Tuesday 2 July

TIME: 12 minutes

MARKS: 12

INSTRUCTIONS:

Standard Items:Pens, pencils, drawing templates, eraserSpecial Items:Three calculators, notes on one side of a single A4 page (these notes to be handed in with this assessment)

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

7. (7 marks)

The displacement, x cm, of a body from the origin after t seconds can be calculated by $x = 3t^2 - 12 \ln t + 1$ t > 0

Determine

(a) the displacement and acceleration when t = 2 [4]

(b) the time when the body comes to rest

(c) the distance travelled between t = 1 and t = 2 [2]

[1]

8. (5 marks)

The approximate apparent magnitudes of two heavenly bodies are listed in the table below.

Heavenly body	Apparent magnitude <i>m</i>				
Sirius	-1.5				
Antares	1				

The ratio of brightness (or intensity) $\frac{I_A}{I_B}$ of two objects A and B of apparent magnitudes m_A and m_B respectively, satisfies the equation $\ln\left(\frac{I_A}{I_B}\right) = m_B - m_A$

(a) Determine the ratio of the brightness of Sirius to Antares $\frac{I_s}{I_A}$. [2]

(b) If the ration of $\frac{I_{Jupiter}}{I_{Sirius}}$ is \sqrt{e} , determine the apparent magnitude of Jupiter. [3]